Tall LICK	et Numbe	Γ.		-	

Code No.: 1112 O

VAŞAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. I Year I-Semester (Old) Examinations, December- 2015

Mathematics-I

Max. Marks: 70 Time: 3 hours Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 X 2=20 Marks)

1) Define linearly independent and linearly dependent vectors.

2) Find the eigen values of the matrix $A = \begin{bmatrix} 3 & 1 \\ 4 & 0 \end{bmatrix}$

- 3) Write the Leibnitz test for testing the convergence of an alternating series.
- 4) $\sum u_n + \sum v_n$ are two series of positive terms such that $u_n \le v_n, \forall n$ compare the convergence or divergence of one series with reference to the nature of the other.
- 5) Define Center of curvature and write the formula for finding the center of curvature of a curve at a point (x,y) in Cartesian coordinates.
- 6) Discuss the symmetry property and asymptotic property of the curve

$$(y-2)[(x+3)^2+4a^2]=8a^3$$

- 7) Find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial v}$, when $u = \log \left[\frac{x^3 + y^3}{x + v} \right]$
- 8) Express Sin x Cos y as a polynomial in x,y of 3^{rd} degree.
- 9) Evaluate the triple integral $\int_{0}^{\pi} \int_{0}^{\pi/2} \int_{0}^{a} rSin\theta Sin\phi dr d\theta d\phi$

10) Find the area of the region bounded by the curve $y = x^2$ and the line y = x

Part-B (Marks: 5 X 10= 50) (All bits carry equal marks)

- 11) (a) Test the consistency of the system of equations 3x + 3y + 2z = 1; x + 2y = 4; 2x 3y z = 5and solve them if they are consistent
 - (b) Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form and specify the matrix of transformation.
- 12) (a) Define a series. Discuss the nature of convergence of the following series

i)
$$\sum_{n=1}^{\infty} \sqrt{\frac{3^{n-1}}{2^{n-1}}}$$
 ii) $\sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{n}}$

(b) Define (i) alternating series (ii) Absolute convergence of a series (iii) Conditional convergence of a series. Also test the Absolute convergence of the series $\sum_{0}^{\infty} \frac{(-1)^{n-1}}{n^2-1}$

- 13) (a) Find the radius of curvature at the origin of the curve $y^2 = x^2 \frac{a+x}{a-x}$
 - (b) Show that the Evolute of the ellipse $x = a\cos\theta$; $y = b\sin\theta$ is $(ax)^{\frac{2}{3}} + (by)^{\frac{2}{3}} = (a^2 b^2)^{\frac{2}{3}}$
- (a) Using Lagrange's method of undetermined multipliers, Show that the rectangular solid of maximum volume that can be inscribed in a sphere is a cube.
 - (b) If $u = 2xy, v = x^2 y^2, x = r \cos \theta, y = r \sin \theta$, find $\frac{\partial(u, v)}{\partial(r, \theta)}$
- 15) (a) Evaluate $\iint_{R} (x + y) dy dx$, R is the region bounded by x = 0, x = 2, y = x, y = x + 2(b) Evaluate $\int_{0}^{\infty} \int_{0}^{x} e^{-xy} y dy dx$ by changing the order-of the integration

(b) Endating $J_0 = J_0$ (c) Endating $J_0 = J_0$ (a) State Cayley-Hamilton theorem and verify with the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ and find A^{-1}

(b) Examine the function $f(x, y) = x^2 y^3$ where x + y = 35 for extreme values.

17) (a) Test the convergence of (i) $1 + \frac{3}{7}x + \frac{3 \cdot 6}{7 \cdot 10}x^2 + \frac{3 \cdot 6 \cdot 9}{7 \cdot 10 \cdot 13}x^3 + \dots$ (ii) $\sum \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \frac{x^{2n+1}}{(2n+1)}$

(b) Trace the curve $y^2 = \frac{x^2(1+x)}{2-x}$